observacion_web_4.png Observación meteorológica

 SGS_ISO 14001_TCL_HR.jpg ISO 9001 ESP ENAC RGB EC-7922-14.png

 

 

Puede parecer básico pero es muy difícil observar correctamente la atmósfera.

Existen muchas razones por las cuales una medida meteorológica puede contener errores. Entre las más comunes son una inadecuada elección del elemento sensor, una mala ubicación del punto de medida, una deriva del sensor debido al envejecimiento, o incluso una mala integración con el resto de los componentes. También son comunes pérdidas de datos debidas a problemas energéticos, insuficientes sistemas de protección, métodos de transmisión de datos ineficaces o erróneos o inexistentes programas de mantenimiento.

Básicamente se pueden distinguir dos formas de observar la atmósfera:

Es una medida generalmente analógica, utilizando elementos sensores que necesitan de una revisión y lectura periódica e in-situ realizada por personal con experiencia.
Entre sus ventajas están su facilidad de instalación y operación, relativa longevidad y bajos coste de mantenimiento de los sensores y estructuras.
Su principales desventajas son que necesita de personal con presencia continuada y que los tiempos de muestreo dependen de la frecuencia de las visitas.
Realizada por sensores que convierten el valor de la variable meteorológica en medidas eléctricas que a continuación son digitalizadas para ser almacenadas en un sistema de adquisición de datos. Estos equipos son sofisticados, requieren de personal especializado para su instalación y mantenimiento, necesitan una reposición de los elementos sensores frecuentes y necesitan energía para operar. Sin embargo son de gran precisión, pueden medir un gran espectro de fenómenos, puedes conocer su valor remotamente y requieren menos personal para su mantenimiento en campo.

La conveniencia de aplicar una u otra técnica depende de la aplicación, sus objetivos y de los recursos disponibles a corto, medio y largo plazo.

En la decisión de qué método resulta más conveniente para tu aplicación, interMET pone a tu disposición su amplia experiencia. Llevamos años diseñando, instalando y gestionando sistemas de observación meteorológica en subsuelo, superficie, torres y varias técnicas de detección remota (SODAR, LIDAR, satélite).

InterMET diseña un sistema de observación siguiendo estos sencillos pasos:

Analizamos contigo los recursos disponibles (humanos, técnicos y presupuestarios).
Te asistimos en la definición de los objetivos de tu red a corto, medio y/o largo plazo.
Juntos definimos una estrategia de medida que te lleve con éxito a la consecución de los objetivos. Esto significa decidir el número de puntos de medida, los sensores y equipos idóneos y los criterios de ubicación de estaciones a nivel micro y macro-escalar apropiados para tu aplicación.
Definiremos un programa de gestión y un programa de control y aseguramiento de la calidad, que te permita amortizar la inversión que has realizado.

interMET tiene amplia experiencia en el diseño, instalación, gestión y explotación de redes meteorológicas. Puedes contar con nuestra experiencia para tu proyecto.

observacion_web_4.pngProyectos

  

# With the first station taking first measurements on 1998 at 2080 m height, this network was during a long time a pioneer in alpine automatic measurments. This project has been for interMET not just a project, it has been our workbench that made our human and technical skills to be taken almost to the limit.

observacion_web_4.png  gestion_2_web.png      analisis_datos_web.png  i+d_web_3.png      

# The objective of this project was to have a rugged, compact housing for scientific quality meteorological sensors, data logging and telecommunication equipment. This housing should be easy to install and make minimum impact on the environment: no fences, no civil work and low visual impact.

observacion_web_4.png  gestion_2_web.png     analisis_datos_web.png  iso_web.png 



#Based on our experience in monitoring in alpine climates we were asked to design, install and maintain "the best" hydro-meteorological network that could be imagined in a mountain area. Considering how difficult it is to achieve reliable measurements in this environments we have proposed and installed a network base on gravimetric rain gauges, snow height sensors, 4 components radiation and specially designed sensors and systems for this environments.

observacion_web_4.png  gestion_2_web.png      analisis_datos_web.png  i+d_web_3.png     



#We had never been asked for a meteorological station inside a cave and at the beginning it sounded easy. No vandalism, no radiation interfering the temperature probes, no animals, no rain neither rime freezing or snow. It sounded like placing a weather station in the office!. But caves are not the easiest places to work in. Special precautions regarding security must be taken due to slippery surfaces and low ceilings with threatening stalactites. From a technical point of view the difficulties come from not having sun for powering systems, no GPRS signal for communications and the worst of all: humidity always close to 99.9%. Fortunately, working together with our client we found a great and robust solution.

observacion_web_4.png  gestion_2_web.png      analisis_datos_web.png  i+d_web_3.png     



P1020705_web_pan.jpgLaser based disdrometers seem complex equipment but are fantastic for measuring precipitation characteristics like size and velocity of water drops or snow flakes. Our client wanted to monitor precipitation very intensively in a small area and we were asked to install more than a dozen of these in an are of less than 8 km square! No problem on replicating the same system for several locations, but they wanted size and velocity of precipitation every minute!. Here the challenge was data logging and reporting taking into account the huge amount of data sampled. It was solved designing an ad-hoc logger that showed an excellent performance even being solar powered.

observacion_web_4.png  gestion_2_web.png      analisis_datos_web.png  i+d_web_3.png     

 

# Met masts with mechanical anemometers and wind vanes have being the standard for wind power assessment during many years. This measuring principle relies on the conversion of the wind energy into mechanical energy that anemometers and wind vanes convert to an electric signal proportional to wind speed or wind direction. Like any other measuring technique, anemometers and wind vanes have their advantages and disadvantages. One of the limitations of anemometers and wind vanes is that that they need a solid structure to be held at a certain height, the other is that they take samples of wind almost in a single point. In the last decades, size of wind turbines have grown considerably. With this increment on rotor height, a more precise assessment of the wind profile is then necessary in order to make a better production forecasting. It is possible to use tall towers with sensors all their way up to 100 meters or more, but the increase of the costs of such towers increase considerably. This fact along with others like reliability, installation and maintenance costs and environmental impact make necessary to consider other measurement techniques that do not need towers. One option is to use a SODAR (SOund Detection And Ranging). They use the heterogeneities found on air to reflect ultrasonic sound pulses and retrieve their velocity using the Doppler effect theory. SODARs are at ground level but can reach very high levels of the atmosphere, depending on their configuration. SODARs specially focused on the first hundreds of meters of the atmosphere have become in the last years very helpful on the wind energy resource area.

observacion_web_4.png  gestion_2_web.png      analisis_datos_web.png  i+d_web_3.png      

 

#Our meteorological networks ussually have had spring, winter and fall as the “hot” season since it is when most interesting meteorological phenomena ocurrs at midle latitudes. Mostly of our skills and experience was earned to deal with winter related technical problems. For this network, it was the opposite. Wild fire risk is higher in late spring, summer and early fall, so concentration needs to be kept high all the year round.

observacion_web_4.png  gestion_2_web.png      analisis_datos_web.png  i+d_web_3.png     



FAQs

¿Cuánto cuesta una estación meteorológica?

¿Cual es la mejor estación meteorológica posible?

Pregúntanos

 

logo-intermet.176x48.png




Contacto


#

interMET
Sistemas y Redes S.L.U.

Cea Bermúdez, 14B, 6ºC
28003 Madrid
España

#

(+34) 915 134 867



Inicio


Empresa

Servicios

    #  #  #  #  i+d_web_3.png  #  #

Proyectos

FAQs

Contacto